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Thermodynamics of the one-dimensional multicomponent 
Fermi gas with a &function interaction 

P Schlottmann 
Departmen1 of Physics. Florida Slate University, Tallahassee, FL 32306. USA 

Received 9 March 1993 

Abstract. We consider a gas of. Fermions with parabolic dispenion and N spin-components 
(or spin S. N = 2s + I) with S U ( N )  symmetry in one dimension interacting via a S-function 
potential. The model is integrable and ifs solution has been obutined by Sulherland in rems of N 
nested Bethe umu~ze. We analyse the discrete Belhe omutz equations and classify their solutions 
according lo the suing hypothesis. The thermodynamic Bethe-amurz equations are derived for 
arbitrary band-filling for both repulsive and a tmt ive  interaction in t e m  of the lhennodynamic 
energy potentials for the classes of eigenstates of the Hamiltonian. These equations are then 
discussed in several limiting cases. e.g. S = 112. lhe ground slate (7 -f 0). For vanishing 
interaction smngth. for svong coupling. in the high-temperature IimiL and the large-N limit 

1. Introduction 

Highly correlated electron systems were a subject of great interest even before the discovery 
of high-temperature superconductivity. The strong correlations induce quantum fluctuations, 
which determine the physical properties of the system. Quantum fluctuations play a 
particularly important role in systems of reduced dimensionality. Exact solutions are often 
accessible for one-dimensional models and can serve as a testing ground for approximations 
intended for more complex problems. It is therefore important to reach an understanding 
that is as complete as possible for these exactly soluble models. 

In this paper we study the equilibrium thermodynamics of a gas of fermions in one 
dimension with N spin-components (colours with SU(N) symmetry) interacting via a 6- 
function potential. The fermions are assumed to have a parabolic dispersion with the mass 
of the particles equated to 1/2 and the interaction strength is denoted by c. The Hamiltonian 
has then the following form: 

~ 

~ 

where Ne is the number of particles in the system and the sum in the interaction term is 
restricted to i < j to avoid double counting. The Hamiltonian is independent of the colours 
of the particles. which are incorporated via the symmetry of the wavefunction. 

Model (1.1) has been exactly diagonalized by means of the Bethe unsatz for the 
following situations. (i) If N = Ne the Pauli principle is irrelevant and each particle 
interacts with all the others, so that the system is equivalent to the gas of bosons solved 
by Lieb and ~Liniger [I]. (ii) For S = 1/2 the model was diagonalized by two nested 
Bethe unsatze by Gaudin [2] and Yang [3]. (iii) This result was extended by Sutherland 
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[4] to an a rb i t rq  number N of spin (colour) components by means of a sequence of N 
nested Bethe ansatze, each step eliminating one spin degree of freedom. The ground-state 
properties of the Bose gas with repulsive interaction have been discussed in [1,5] and 
the equations determining the thermodynamics were derived in [6]. For the twocomponent 
fermion gas with a repulsive interaction some ground-state properties were obtained in [2,3], 
while the case of an attractive coupling was briefly discussed in 121. The thermodynamics 
for S = l j 2  was treated by Takahashi [7] and Lai [SI for both attractive and repulsive 
interactions. Finally, the ground-state Bethe ansafz equations for an arbitrary number of 
components and c > 0 were obtained in [4] (see also [9]), while the ground-state solution 
for attractive potential can be found in [IO] (see also [SI). In this paper we extend the 
thermodynamic Bethe ansae equations for S = 112 to an arbitrary number of colours. 

Our starting point are Sutherland's discrete Bethe ansah equations [4] for the model 
(1.1). The coordinate Bethe ansatz is formulated as a linear combination of plane waves 
with Ne wavenumbers given by the set {kj}. All the wavenumbers kj have to be different 
for the plane waves to be linearly independent. The energy and momentum of the state are 
given by 

j=l  j=I 

Periodic boundary conditions give rise to a new eigenvalue problem of N. operators, each 
consisting of products of Ne - I two-particle scattering matrices. All N .  operators are to be 
diagonalized simultaneously. For S = 1/2 assume N .  - M electrons with spin up and M 
with spin down. The problem can be parametrized as an one-dimensional lattice gas of Ne 
sites with M particles and Ne - M holes (M < Ne - M), or equivalently, as a Heisenberg 
chain, and can be solved by a second generalized (nested) Bethe ansatz [2, 31 in terms of 
another set of rapidities which we denote {{*I. 

The generalization of the Yang-Gaudin solution to more than two colours [4] consists of 
an iterative application of the BetheYang hypothesis (generalized Bethe ~ s Q ~ z ) ,  such that 
one colour is eliminated at each step, leading to N nested Bethe ansatze (for N colours). 
Each Bethe ansatz gives rise to a new set of rapidities, [f;"], I = 0,. . . , N - 1, with 
k, = {Lo) and a being the running index within each set. All rapidities within a given set 
have to be different to ensure linearly independent solutions. Consider fermions of spin 
S, so that N = 2s + 1. Let us now denote by N s - ~  the number of particles with spin 
component m and define 

such that Ne 2 M"' 2 . . . 2 M'2SL 3 0 (note that the Bethe ansatz eigenfunctions are 
only a basis of states within this subspace, but they are not a complete set of eigenstates of 
the Hamiltonian [ I  I]) .  Then the nested Bethe ansafze yield the following sets of coupled 
equations (SU(N) symmetry) [4]: 

(1.4) 

a =  I ,  ..., M"' [ =  I ,  ..., 2s 



I D  multicomponent Fermi gas with a S-function interaction 5871 

where L is the length of the box and 

The rapidities CL’’ may take real and complex values, and are the solutions of the set of 
non-linear algebraic equations (1.4). There are many solutions, which are discussed below, 
each one corresponding to a possible state of the system. 

The partition function or free. energy of a system can be obtained with the knowledge of 
all the energy eigenvalues. In the thermodynamic limit there is an infinite number of states, 
all solutions of (IA), such that it is necessary to classify them and introduce a density of 
states for each class of excitations. The structure of the ground and excited states for a 
repulsive interaction is discussed in section 2 and relations among the densities of these states 
are derived. Sets of thermodynamic equations are obtained by minimizing the free energy 
functional. Special limits of these equations are considered in section 3, i.e. we recover 
the ground state in the limit T -+ 0, discuss the c -+ 0 (free fermions) and the c + 00 

limits, the high-temperature limit, and the large-N limit In section 4 we classify the states 
for an attractive interaction and derive the corresponding integral equations satisfied by the 
thermodynamic energy potentials. The special limits for the attractive case are discussed in 
section 5 .  Conclusions,and a discussion of some properties of the model follow in section 6. 
The results of this paper extend the thermodynamic equations derived by Takahashi [71 and 
Lai [8] for S = 1/2 to an arbitrary number of spin components with SU(N) symmetry. 

~ 

2. Classification of states and thermodynamic equations: repulsive interaction 

The partition function of a system can be obtained from a knowledge of all the energy 
eigenvalues. It is therefore necessary to classify all the solutions of the Bethe unsafz 
equations ( I  .4) and introduce densities of states for each class of excitations. The equilibrium 
free energy is then obtained by minimization of the free energy functional with respect 
to the densities. The mathematical approach to derive the thermodynamic Bethe ansatz 
equations was developed by Yang and Yang [6] for the one-dimensional boson gas with 
a &function interaction and has been extended to numerous other models [7,8,12-241. 
Models with a classification of states similar to that of the gas of fermions with a repulsive 

with U > 0 [13], the Kondo problem [IS, 161 and the Coqblin-Schrieffer model [17-191. 
While on one hand our results are the extension of [7,8] to arbitrary spin, on the other 
hand, the integral equations have a structure related to that of the Bethe ansatz equations 
for the Coqblin-Schrieffer model of spin S [17-191 and the generalized SU(N) symmetric 
Heisenberg chain (251. 

Below we first classify the solutions of the discrete Bethe ansatz equations for a repulsive 
interaction in the thermodynamic limit accordingto the string hypothesist and then we derive 
the thermodynamic Bethe ansatz integral equations. 

2.1. Classifcation of’ states for arbitrary spin 

For a repulsive interaction, c 0, the chare rapidities k, are all real, since (Cooper- 
pair-like) bound states between electrons cannot form [2-4,9]. On the other hand, the,spin- 
rapidities can form strings of arbitrary length (n - I), n = 1. . . . ,W. and real centre-of-mass 

~ interaction are, for instance, the Heisenberg chain [12], the one-dimensional Hubbard model 

- 

t The accuracy of the swing hypothesis has been questioned by Faddeev and T&tajan in [%I. Their findings. 
however, affeci neither the counting of sfates nor the lhermodynamic properties. 
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rapidity A:‘ 

en - 
where I = I. . . . , 2 S  and 8 2  = O(e-“‘), K > 0, vanishes in the thermodynamic limit, 
L + 03. Complex spin rapidities correspond to many-electron spin-states, often referred 
to as bound states, although they correspond to excited states (however, the wavefunction 
falls off exponentially as a function of the relative distance between the particles). Below 
we adopt the traditional denomination of ‘spin bound states’. Since there are 2s possible 
spin-flips per electron there are 2s classes of spin rapidities and 2s sets of strings. If MA’) 
is the number of spin bound states of n electrons of the lth set of rapidities we have that 

(2.1) IfIU - Acfl + ’ i p / 2  + 8‘l’P f i  = -(n - I), -(n - 31, . . . , (n - 1) 

Note that the S = 1/2 situation [7,8] is contained as a special case. 
The above string solutions are inserted into the discrete Bethe unsutz equations (1.4), and 

after some algebra coupled equations for the real parameters (&I and {At:} are obtained. 
Since these equations represent relations among phase shifts, it is convenient to make them 
logarithmic. The logarithmized equations are defined modulo ZH. This defines a set of 
integers (or half integers) [I,!l)] for each class of states (I = 0 corresponds to the set 
of charge rapidities). Since the Bethe unsatz requires all rapidities to be different, also 
all integers I,  within one set must be distinct. These integers play the role of quantum 
numbers of the many-body system. Each state is characterized by a different collection of 
quantum numbers. Hence, an arbitrary integer (half integer) is either contained in a given 
set or it is missing. Consequently, within the Bethe unsafz formulation all the rapidities 
obey Fermi-Dirac statistics. A quantum number that is present is called a ‘particle’ and 
one that is missing a ‘hole’. 

In the thermodynamic limit, i.e. L + 03 with Mif) + w by keeping the ratios 
constant, the above non-linear equations for the rapidities can be transformed into linear 
integral equations. In the limit of large L the variable ;?n$/L becomes closely spaced 
and can be regarded as continuous. It is convenient to introduce ‘particle’ density functions 
for each set of rapidities: p ( k )  for the charge rapidities and @(A) for the strings (spin 
bound states) A t L ,  and similarly the corresponding ‘hole’ distribution functions. Since any 
quantum number corresponds to either a particle or a hole, the derivative of I @ ) / L  with 
respect to k and of I $ /L  with respect to A!) represents the sum of the particle and hole 
density of states, i.e. p ( k ) + f i ( k )  and u$(A)+u~(A), respectively. The ‘particle’ density 
and the ‘hole’ density are complementary functions. 

As a result, we obtain linearly coupled integral equations for these distribution functions: 
Fourier transforming we have after some algebra 

S(U) = 
00 

-+ &(U) - Cexp(-n(olc/2)?~,’”(w) 

where n = I , .  . . , 03, I = I , .  . . ,2S  and the hat denotes a Fourier transform. We identify 
?Aop’(o) = &,,. I~(U),  ?AN1(o) 0 and 

Anm(m) = coth(locl/2)Iexp(-In - mllocl/2) - exp[-(n +m)locl/21). (2.4 



ID multicomponeni Fermi gas with a &function interaction 5873 

The above relations among the particle and hole densities of states follow from the 
solutions of the Bethe ansan equations (string solutions and Fermi statistics) in the 
thermodynamic limit and are valid under general conditions (thermal equilibrium and non- 
equilibrium). 

The energy, momentum and total number of electrons of the system are given by 

(2.5a) 

The number of particles of each colour (i.e. also the magnetization) can be determined 
through ( I  = I ,  . . . ,2S) 

I I E / L  = dkk2p(k)  P / L  = dkkp(k)  N J L  = dkp(k) .  I 

(2.5b) 

An altemative set of equations that is equivalent to the second set of (2.3) is 

2cosh(wc/2)6~~(o) - 6tk,h(o) - &iilh(o) 

= Gm -11+11 (0) + 6;'-"(o) - Zcosh(wc/2)6$'(o) m 2 2 
I111 - 11+11 (2-61 

~ 
2cosh(oc/2)6~~(o) - L T ~  (0) = U ,  

where again 6:"(0) = &,1&5(0) ,and &ANJ(o) 
The above relations are similar (except for the driving terms) to those of the Ccqblin- 

Schrieffer impurity model [ 17-19] and the SU(N) Heisenberg model [251. Neither of these 
models, however. has charge fluctuations, present in the electron gas. 

2.2. Thermodynamics for arbitrasy spin S 

To obtain the free energy we have to impose thermal equilibrium. For this purpose we 
consider a free energy functional, F = E - T S ,  of the dismbution functions for particles 
and holes, where E is. the energy (given by (2.5a)). T is the temperature and S is the 
distribution entropy of 'particles' and 'holes'. There is an entropy term for each class of 
excitations; since particles and holes are govemed by Fermi statistics, the entropy term for 
the charge rapidities, for example, is given by 

(0) + &,(l-''(o) - 2cosh(oc/2)6~"(o) 

0. 

S, /L  = &I(P + ph) M p  +A) - P Mp) - ph 1Nph)l (2.7) 

and corresponding expressions hold for all other classes of states. The minimization of 
the free energy functional must be carried out considering the relations between particle 
and hole densities derived above, (2.3) or (2.6). and subject to the constraints of constant 
number of electrons of a given colour. The latter constraints are introduced in a standard 
way via Lagrange multipliers AI, by subtracting AIM"' from the free energy. The 
corresponding Lagrange multipliers represent the chemical potential ( I  = 0), magnetic field, 
crystalline field splittings, and so on. 

I 

- 

It is useful to introduce an energy potential for each class of excitations, namely 

c ( k )  = T In(ph/p) ~ 
q:''(A) = T In(o,'f/u,") = T ln(q,!") (2.8) 

for! = I ,  .... 2s andn = 1 ,..., W. 
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We consider p and U$ as independent functions and eliminate the ‘hole’ distributions 
using (2.3). After some algebra the variation of the free energy yields 

- e /dA’Cnm(A - A’) In([l + r~l’~)(A’)-’l[l + qi-l’(A‘)-ll} 

I = ] ,  ..., 2 s  n = l ,  ..., w (2.9) 

where Anm(A) is the Fourier transform of &,,(w), C.,(A) the Fourier transform of 
~,,(w)/[2cosh(oc/2)], q:” = exp(€/T), q:) = 00 form > 2, qLN1 w and the free 
energy of the Fermi gas is given by 

m=I 

F / L  = -T - In[l +exp(-~(k)/T)]. (2.10) 1; 
Note that the pressure of the electron gas is just P = - F / L .  

The density functions can be obtained from the energy potentials E and fp,!’) via 

(2.11) 

where ,U is the chemical potential. The Lagrange parameter Ao plays the role of the chemical 
potential within the present formulation. The corresponding hole density functions are 
obtained using (2.8). To prove the relations (2.1 I) we differentiate (2.9) with respect to Ao; 
the resulting set of equations is then identical to (2.3) with the use of (2.1 1). It is also easily 
verified by using (2.1 I )  that the thermodynamic relation aF / ap  = -Ne is satisfied. 

Equations (2.9) form an infinite set of recursion relations for the potential functions E 
and fp;’’. The second set of equations (2.9) is equivalent to the following expressions: 

where q t ’  = 0, and G I P ,  CY,. and f i  are the Fourier transforms of 

sinh[(N - max(l. I‘))wc/21 sinh[min(l, f’)wc/2] 
sinh(Nwc/2) sinh(wc/2) 

I”l(o) = sinh(loc/2) . 
sinh(Noc/2) 

2.ll’(O) = 

(2.13) 
efl .(w) = 2cosh(oc/2)6,1t(o) 
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respectively. This alternative set of equations (2.12) does not explicitly depend on the 
Lagrange multipliers AI; this dependence is then introduced via the asymptotic field 
boundary conditions 

(2.14) 

As already mentioned earlier there is a formal similarity between the thermodynamic 
equafions for the Fermi gas with a repulsive 8-function interaction and those of the Coqblin- 
Schrieffer impurity model [ 17-19] and the SU(N) Heisenberg chain [=I. This similarity is 
imposed by the common SU(N)-symmetly. 

The above set of non-linear integral equations can in general not be solved analytically. 
In the following section we discuss special limits of these equations. 

3. Special cases: repulsive interaction 

In this section we discuss several limiting situations of the thermodynamic Bethe ansatz 
equations for a repulsive interaction derived in section 2. 

3.1. Spin S = 112 

For S = 112 we recover the results presented in [7,8]. Since there is only one spin degree 
of freedom the superscript I in p:‘] can be dropped. For Ao = A + Hj2 and A, = H 
equations (29) reduce to equations (4.10) of [7] if we identify our exp(c(k)jT) with {(k) 
of [7]. 

32. Zero-temperuture limit: the ground state 

The ground-state integral equations, originally derived by Sutherland [4], can be recovered 
in the limit T -+ 0. The Lagrange multipliers A, for 1 = I , .  . . ,2S determine the level 
splitting between the different colour components. From their definition they are bound 
to be non-positive (negative or zero). As T -+ 0 it becomes relevant whether the energy 
potentials are positive or negative. We follow a procedure similar to that employed in [7] 
and 1121. We separate the energy potentials into their positive and negative paits, i.e. 
p:‘](A) = pAI1f’(A) + pAI)- (A), e(k) = d ( k )  + c-(k). such that p,!I’+(A), &(k) > 0 and 
pA’]-(A), e-(k) c 0. Equations (2.9) in the limit T + 0 then yield 

p“’-(A) 
I nc/2 
x (A - k)2 + ( n ~ j 2 ) ~  

m 
e(k) = kZ - A o +  ZIdA- 

“=I 

~ ~ Note that p: and pk’l- 0. Using the asymptotic boundary conditions (2.14) 
it follows that p:)(A) > 0 for all l and n 1 is a possible (and the physical) solution. 
Hence, all string states are unoccupied and there are no spin bound states in the ground state. 
All rapidities in (1.4) are then real in the ground state, in agreement with Sutherland’s [4] 
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original result. Only m = n = I terms survive in the sums of (3.1). Below we drop the 
subindex n = 1 in #, unless explicitly needed. 

By inspection we obtain from (3.1) that 6(k )  and q(IJ(A) are symmetric functions of 
their arguments, which monotonically increase with Ikl and IAl, respectively. For non-zero 
density of electrons we must have E(k = 0) c 0. Hence, c(k)  has exactly one zero for 
k > 0, which we denote with Q, i.e. €(&e) = 0; Q increases monotonically with the 
chemical potential. Note that rp"'(-+oo) is either positive or zero, so that these functions 
have zeros at ~ B J ,  i.e. rp"'(iBJ) = 0, where BJ can be W. If one p") has no zero (i.e. it is 
always positive) then the system lacks particles of one colour, so that the problem reduces 
to one with only N - I degrees of freedom. While Q represents the Fermi surface of the 
charge rapidities, the BJ play the role of the 'Fermi surface' for the spin waves. In the 
absence of external fields A, = 0 and BJ = CO for 1 1, so that the spin-wave bands are 
completely filled, while p = Ao. 

From the definition of the energy potentials (2.8) it follows that the states for which the 
potential is negative are occupied and those for which the potential is positive are empty 
(holes). Differentiating (3.1) with respect to the chemical potential, p (or Ao), and using 
(2.1 I )  we obtain 

(3.2) 

where do' p and dNJ = 0. These equations are identical to those derived by 
Sutherland [4]. They are also equivalent to the set (2.3) if thermal equilibrium is imposed 
on the latter. 

The total momentum of the ground state is of course zero. The ground-state energy, the 
total number of electrons and the number of particles of each colour are obtained through 
(2.5). 

3.3. The limit c + CO 

In the limit of a very large interaction the last line of (2.12) vanishes so that charge and 
spin degrees of freedom decouple. Consequently the spin waves have no dispersion and the 
qt' are just constants. The remaining A' integrations can now straightforwardly be carried 
out and we obtain from the second set of (2.9) 

Here q$ = q ,  ( N I  = - W. The solution of this set of algebraic equations depends on the 
parameters AI, and can in general not be obtained For S = 112 we have A ,  = -H, the 
magnetic field, and an explicit solution has been obtained in 17.81. For general spin and 



ID multicomponent Fermi gas with a &function interaction 5877 

pure Zeeman splitting, we have A, = -H and the algebraic recursion relation can still be 
solved 

sinh[(n + I)H/ZT]sinh[(n + N - l)H/2T] ., (3.4) 

The tirst equation of (2.9) can also be simplified in the large-c limit. To order l / c  we 

I -I- ‘I!!’ = 
~ sinh[lH/ZT] sinh[(N - l)H/2T] 

obtain 

m sinh(NH/ZT) 
“=I smh(H/ZT) 

E(k) = k2 - A o  - T x l n [ l  + (IJ;”)-’] = k2 - p - TIn . (3.5) 

where we used that Ao = p+SH. The last term in (3.5) corresponds just to the free energy 
of independent spins (dispersionless spin waves) in a magnetic field. The charge dispersion 
is perfectly parabolic (without mass renormalization), indicating that the charges behave like 
non-interacting spinless fermions. Indeed, if c + w (hard-core repulsion) Pauli’s principle 
holds as well for electrons with different colours. The free energy is given by (2.10): it 
corresponds to that of non-interacting fermions with a chemical potential renormalized by 
the magnetic field. 

3.4. The limit c -+ 0 
In the non-interacting limit the Lorentzian integration kemels in (2.9) can be replaced by 8 
functions, and all the integrations can be carried out immediately. The second set of (2.9) 
leads to algebraic equations identical to (3.3) except that the charge degrees of freedom do 
not decouple from the spin waves, i.e. we have to interpret I$’ as exp(e/T). Hence, 
the spin waves.will have a~dispersion induced via the charges and the spin wave spectrum 
is correlated with the Fermi surface of the charges. 

For a Zeeman splitting the solution of these algebraic equations is of the same general 
form as (3.4). except that.the argument nHI2.T is to be shifted by a quktity A, i.e. 
nH/2T + nH/2T + A ,  where A contains the dispersion and is determined via 

sinh(H/T + A) sinh(NH/ZT + A) - - I 
I + exp(-t/T) sinh(H/ZT) sinh(SH/T) 

(3.6a) 

The other relation necessary  to^ determine E .and A self-consistently arises from the first 
equation of (2.9): 

sinh(NH/ZT + A) 
sinh(H/ZT 4- A) e (k )=kZ-H-Tln  . 

Expressing h as a function of E from the last equation, one arrives at 

exp[(e - k2 + p - SH)/Tl - 1 
exp[(e - kZ + p + SH)/Tl - 1 

e 2 i  = e-H/T 

(3.6b) 

(3.6~) 

which inserted into (3.6a) yields the self-consistency equation for E(k) as a function of k, 
H, T and p.  For S = 1/2 an explicit solution was obtained in 171 ,and [8]. 

3 .S. High-temperature limit 

If the thermal energy is much larger than the interaction strength, the Lorentzian integration 
kemels in (2.9) can be regarded again as 6 functions and the problem reduces to the one 
discussed in subsection3.4, except for cokxions of order c Q / T .  
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3.6. Large-N limit 

In the large-N limit Pauli's principle should become irrelevant, since almost all particles 
can interact with each other. We are going to consider all colours equally (same number of 
particles per colour and no external potentials). Hence. if we freeze out and eliminate the 
spin degrees of freedom, the problem should then essentially reduce to a gas of interacting 
bosons [I]. Suppressing the internal degrees of freedom means A, 0 and ?$ + w for 
n >  I a n d / = I .  .... 2s. 

Using a similar procedure that lead from (2.9) to (2.12) we can arrive at one integral 
equation for the charges: 

~ ( k )  = k2 - p - T dk'Fzp(k - k') In[l + exp(-~(k')/T)] (3.7a) 

where F;ip(k) is the Fourier transform of exp(-[ocl/2)&s(o). In the large-N limit we 
obtain 

s 
C 

c ( k ) = k 2 - p - T  dk- In[l +exp(-<(k')/T)] (3.7b) / (k  - k')2 + c2 

which is indeed the thermodynamic equation for a one-dimensional gas of bosons with a 
repulsive &function interaction [6]. 

4. Chif icat ion of states and thermodynamic equations: attractive interaction 

For an attractive interaction we proceed in a similar way as in section 2 for the repulsive case. 
We first classify the solutions of the discrete Bethe ansatz equations in the thermodynamic 
limit according to the string hypothesis [26] and then we derive the thermodynamic Bethe 
ansatz integral equations. Our results are the generalization of those in [7,8] to arbitrary 
spin. On the other hand, the integral equations are formally similar to those of the 
degenerate Anderson impurity model in the limit of infinite Coulomb repulsion [22-24] 
and the degenerate supersymmetric t - J model in one dimension [27]. 

4.1. Classification of states for arbitrary spin 

For an interaction that is attractive, c < 0, the charge rapidities can now be complex [2, 7,8], 
since attractive forces may lead to bound states of electrons of the Cooper-pair type. The 
solutions of ( I  .4) are constructed in complete analogy to the Anderson impurity of arbimry 
spin in the U + w limit [22-24] and the one-dimensional degenerate supersymmetric 
t - J model [271. For large L the states of the system can be classified according to (i) real 
charge rapidities, belonging to the set { ~ $ 1 ) ,  associated with unpaired propagating electrons, 
(ii) complex spin and charge rapidities, which correspond to bound states of electrons with 
different spin components (colours), and (iii) strings of complex spin rapidities, which 
represent bound spin states. 

Since only electrons with different spin components are scattered, i.e. experience an 
effective attractive interaction, we may build spin complexes of up to (2s + 1) electrons. 
A complex of n electrons (n < N = 2s + I )  is characterized by one real CL"-') rapidity 
and in general complex C'') rapidities, I c n - I ,  given by 

+ ipc/2 1 < n - 1 < 2s $1 = < I " - "  

(4.1 ) 
I, = -(n - I  - I ) ,  -(n - 1-3). . .., (n - 1  - I). 
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The energy and momentum of the system are obtained via [IO] 

4.2. Thermodynamics for arbitrary spin 

The procedure to derive thermodynamic Bethe ansatz equations for the attractive case is 
analogous to that employed for the repulsive situation in section 2. We introduce an energy 
potential for each class of excitations 

P(<) = T in(pf ' /p" ' )  

P;'(A) = T in(cit/c,"') = T ln(qt') 

1 = 0, . . . , 2 s  
(4.6) 

1 = I, . . . , 2 ~  

for n = I ,  .... W. In thermal equilibrium these energy potentials are determined by 
minimizing the free energy functional, F = E - TS, with respect to the density functions 
subject to the constraints (4.4) and the relations (4.2) or (4.3). The energy is given by 
(4.3, the entropy is determined by the Fermi statistics of the rapidities (see (2.7)) and the 
constraints (4.4) of constant number of particles of each colour are introduced via Lagrange 
multipliers A,, by subtracting C:so Aln, from the free energy. 

There are many equivalent ways to minimize the free energy, depending on which of 
the density functions are chosen to be independent. If we choose all the p"'(<) and c:d(A) 
as independent functions we arrive at 

.. . 

I = 0, . . . , 2 s  

dA'Go(A - A') q~,!'l(A) = T 

x In((l +qtiI(A'))(l +qtLl(A'))/[l + ( V ~ + ~ ' ( A ' ) ) - ~ I [ ~  +(q!!-"(A'))-'ll 

+ T&J /dp%(A -<)ln( l  +exp[-~('-"(T)/TIl 

I = I  ,..., 2s n = l ,  ..., w (4.7) 

s 

where Go(A) is the Fourier transform of [cosh(wc/2)1-', 7: = 0, and 
An equivalent set of equations to the last set of (4.7) is 

= 7;"' = W. 



where G;,(<) and GI,,(<) are defined h(2.13) and 02’ = 0. 
If the extemal (magnetic and crystalline) fields are small, almost all the electrons are 

going to be in spin-neutral charge bound states of N electrons; it is therefore convenient to 
distinguish from the other 8l.  The first set of equations of (4.7) can then be rewritten 
as 

(4.9) 

25-1 

dA In(l + rI~i1(A))GI+iq+i(5< - A) -g 
where F,,,(<), GF,,(C)  and^ GI,(<) are defined by (2.13), and the last equation holds for 
I = 0,. . . ,2S - 1. Here p = E:”, A, is the chemical potential. 

In order to be completely defined, equations (4.8) require asymptotic conditions for the 
qA1’ as n tends to infinity. since the equations otherwise are independent of the Lagrange 
multipliers. These asymptotic boundary conditions are determined by the splitting scheme 
of the N-fold multiplet through the parameters Al. We obtain 

In particular, for a pure Zeeman splitting it follows from the definition of the magnetization 
that AZS+I-I - Azs-I = H for 1 = I , .  . . ,2S. Note that AI - JL is independent of the 
chemical potential. 

The free energy of the system is given by 

(4.11) 

and the pressure of the electron gas is just P = - F / L .  
Except for the driving terms the thermodynamic Bethe unsatz equations for an attractive 

interaction are analogous to those of the degenerate Anderson impurity in the U + 03 limit 
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[22-24,281 and the degenerate supersymmetric r - J model 1271. The different driving 
terms of course modify as well the expressions of the free energy. 

The density functions for particles and holes can be derived from the thermodynamic 
potentials by differentiation with respect to the chemical potential, i.e. 

(4.12) 

in analogy to (2.1 1). The corresponding holedistribution functions are obtained by using 
(4.6). The correspondence (4.12) can be shown by differentiating (4.7) with respect to p; 
using (4.12) they then reduce to the first set of (4.2) and to (4.3). Note that, as expected, 
differentiating the free energy, (4.1 I), with respect to the chemical potential, /L, we recover 
(4.4b). the expression for the total number of particles. 

A general solution of the above integral equations cannot be obtained analytically. In 
section 5 we discuss special limits of these equations. 

5. Special cases: attractive interaction 

In this section we discuss several limiting situations of the thermodynamic Bethe ansatz 
equations for an offruefive interaction derived in section 4. 

5.1. Spin S = 112 
For S = 1/2 there is only one spin degree of freedom and the superscript 1 in qA1] can be 
dropped. Identifying our exp(e"'/T) with q' in [7] and our exp(d0)/T) with { of [7] the 
set of equations (4.7) reduces to the set (6.10) of 171. The results presented in [7] and [SI 
are then contained as a special case. 

5.2. Zero-temperature limit: the ground state 

The ground-state equations for an attractive interaction were originally derived by 
Takahashi [IO]. We now consider the thermodynamic Bethe ansarz equations (4.7) in the 
limit T + 0. As T -+ 0 it becomes relevant whether the energy potentials are positive 
or negative and as in section 3 we separate the energy potentials into their positive and 
negative parts, i.e. fp:'(h) = q!'It(A) +#-(A), &(<) = etfbt({) + E ( [ ) - ( < ) ,  such that 
qft(A), E " ' + ( < )  z 0 and p!')-(A), E " ) - ( < )  e 0. Equations (4.7) in the limit T + 0 then 
yield 
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As in (4.7) we have q$+ = &-  = @'I-,= 0. Using the asymptotic boundary condition 
(4.10) it follows that q?;'I(A) 0 for all I and n 2 1 is a possible (and the physical) 
solution. Hence, all bands corresponding,to spin bound states are empty in the ground state. 
Only charge and spin-charge bound states survive as T + 0, i.e. the states corresponding 
to classes (i) and (ii), but not class (iii), in section 4. 

By inspection we obtain from (5.1) that all E ' / ) ( < )  are symmetric functions of C, which 
monotonically increase with 151. Hence, these functions must have zeros at fB,, i.e. 
~ ' " ( f B l )  = 0. These zeros correspond to the 'Fermi surfaces' of the various spin-charge 
bound states. The limits of integration with respect to C' in (5.1) are then -B4 and B4, 
respectively. Hence, E " ) - ( < )  corresponds to 151 < El and e"'f(<) is the complementary 
function; 

It is energetically favourable to maximize the number of charge-spin bound states 
corresponding to strings of length 2s. 'These bound states involve N electrons, one of 
each colour or spin component, and are therefore spin-neutral. In the absence of external 
fields there is an equal number of particles with each colour, and hence the ground state 
consists of spin-neutral bound states only. To  distinguish^ the spin-neutral bound states 
from the spin-dependent ones we denote B Z S  with Q, which is then determined by the 
particle density, while all other Bl are equal zero. For small external fields lifting the N- 
fold degeneracy (e.g. the magnetic field is small compared to the Fermi energy) E ( ~ ) ( ( )  is 
determined by the T --+ 0 limit of the first of equations (4.9). Note that in a zero field e"'(<) 
for I = 0.. . . ,2S - 1 is always positive. It requires a finite excitation energy to overcome 
the energy gap. This energy could be provided by external fields, for example by a Zeeman 
splitting. Hence, there is a critical magnetic field required to break the spin-neutral charge 
bound state into smaller bound-state complexes. In the ground state the system does not 
respond to a tield smaller than the lowest critical one. 

From the detinition of the energy potentials (4.6). it follows that the states for which the 
potential is negative are occupied and those for which the potential is positive are. empty. 
Differentiating (5.1) with respect to:the chemical potential (note that AI - p is independent 
of /.I,) and using (4.12) we obtain 

~ 

- 

These equations are equivalent to those obtained previously by Takahashi [lo] and also 
correspond to the first set of (4.2) in thermal equilibrium as T + 0. 

The number of particles of each spin-component is now given by 

while the total number of electrons and the energy are obtained via (4.4b) and (4.5), 
respectively. The momentum of the ground state is, of course, zero. 

5.3. The limb c --+ --03 

In the strong-coupling limit the spin-neutral charge bound states'of N electrons become 
very stable and the critical fields required to split these bound states into smaller complexes 
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are very large. At finite T the thermal energy is then not sufficient to excite the spin-charge 
bound states of less than N electrons. 

Mathematically this is seen from (4.7) as follows. The &(A) and the Lorentzian 
integration kernels yield contributions of the order of l/]cl, so that the q:’’(A) potentials 
are irrelevant. In the same way, the integration kernel coupling the df’ energy potentials 
leads to contributions of order l/[cl, so that the solution of the integral equations is 

where we have neglected external fields. Since /I - Q2 - c2S(S + 1)/3, only E(=’ can 
become negative and only that band can contain electrons. To order 1cl-I we obtain for 
&SI 

E‘”’(<) = N(<’ - Q2) (5.4b) 

and p‘2s’(<)+pizs’(<) = N/(27r), corresponding to free fermions with the dispersion (5.4b) 
and a density of states enhanced by a factor N. 

5.4. The limit c --f 0 

In the non-interacting limit all integration kernels in (4.7) can be replaced by 6-functions 
and all integrations can be carried out straightforwardly: 

m 

- T In(l + (q:+”(<))-’) 1 = 0 , .  . . ,2S 
”=I 

In(q:’(A))’ = Inl(l + qt;,(A))(l + r?!,!l(A))/[l + (r~:+~’(A))-~l[l + (q!!-’’(A))-‘Il 

+&,I ln[l +exp(-df-”(A))] 1 = I ,  .. . ,2S n = 1 , .  . . ,CO (5.5) 

with qg’ 0 and q:: = qLN’ = CO. An analytic solution of this set of algebraic 
equations can in general not be obtained. For a pure Zeeman splitting there exists a 
solution for the second set of (5.5). which is again of the form (3.4) with the replacement 
nH/2T -+ nH/2T + A. The parameter A again contains the dis ersion introduced via 
the potentials €‘I1. The second set of (5.5) also requires that q$ = exp(-&/T) for 
1 = 0 , .  . . ,2S - I in the ansutz (3.4). A solution of the form (3.4) has the symmetry 
qt’  = qAN-”, which in tum is not satisfied by the first set (5.5). except for S = 1/2. For 
S = 1/2 the solution can be found in 171. For a larger spin the form (3.4) is not the most 
general solution of (5.5). but we were unable to obtain a more general analytic expression. 
As expected, the dispersion of the spin waves is again coupled to the Fermi surface of the 
charges. 

5.5. High-temperature limit 

If the thermal energy is very large the variation of the Fermi functions is smooth, so that 
the integration kemels in (4.7) can again be replaced by 6 functions. To order cQ/T the 
problem then reduces to the one discussed in subsection 5.4. 
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5.6. Large-N limit 

With increasing N, i.e. increasing   number of electrons forming the charge bound states, 
these bound srates (for fixed c) become increasingly stable. The bound-state energy increases 
as N3 for large N. Their binding energy also grows faster with N as that of the spin- 
dependent bound states. Hence, the gaps in the excitation spectrum or the critical fields are 
enhanced with N. The situation is then similar to the c --f -w limit. The spin degrees of 
freedom do not play any relevant role and we obtain 

(5.6) 

This integral equation is closely related to the one of a Bose g& with ;-function 
interaction [61, if the chemical potential is redefined as p' = p + cz(Nz - 1)/12 (the 
only two differences are the factor N multiplying the dispersion and the overall sign of the 
integral term). 

6. Concluding remarks 

 we have considered the N-fold degenerate gas of electrons with SU(N)-symmetry 
interacting via a 8-function potential in one dimension. The model is completely integrable 
and its solution in terms of a sequence of nested Bethe ansafze has been constructed by 
Sutherland [4] (see also [9]). We classified all the states according to the string hypothesis 
and obtained the thermodynamic Bethe ansatz equations for the cases of a repulsive and an 
attractive interaction. Our results extend previous ones for S = 1/2 by Takahashi [71 and 
Lai [8 ]  to arbitrary spin values. The procedure followed is in close analogy to that used to 
derive the thermodynamics of the CoqblinSchrieffer model for a magnetic impurity [17- 
191 (the repulsive case), and the degenerate Anderson model for a magnetic impurity in 
the U + 00 limit [22-24,281 and the degenerate supersymmeuic t - J model in one 
dimension [27]. 

We have analysed the thermodynamic Bethe unsatz equations in several limiting' cases. 
Our results contain the S = 1/2 case [7,8] as a special limit. We further discussed the 
T + 0, c + 0,  IcI + CO, the high-temperature and large-N limits of the thermodynamic 
equations. The most relevant properties can be understood from the low-temperature and 
the large-N limits and a; summarized below. 

For a repulsive interaction there are no bound states in the ground state and the system 
consists of freely propagating charges (characterized by the real charge-rapidities k) and 
spin waves (described by the real spin-rapidities). From the c + 0 limit we see that 
the dispersion of the spin wave excitations is linked to the Fermi surface of the charges. 
The spin waves become soft in the -+ w limit; in this limit the interaction between 
the fermions becomes a hard-core one and an effective Pauli principle is obtained for all 
particles, independent of their colour. It is also interesting to notice that in the limit N + CO 
the thermodynamics of the charges reduces to that of a gas of bosons with a repulsive 6- 
function interaction. The low-T specific heat is proportional to T and the zero-temperature 
susceptibility is finite [29]. 

For an attractive interaction, on the other hand, the ground state in the absence of 
symmetry breaking fields consists of spin-neutral charge bound states of N particles, each 
particle with a different spin-component. Hence, for N = 2 these bound states can be 

- 
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interpreted as Cooper pairs, while for N = 4 as (Y particles in a sea of nucleons with the 
four intemal degrees of freedom arising from the direct product of the spin 1/2 and an isospin 
1/2. Although these charge bound states are the consequence of a coherent collective state, 
there is no long-range order in the system at T = 0. These charge bound states have a finite 
binding energy, i.e. a finite external symmetry-breaking potential (for instance a magnetic 
field in the case of Cooper pairs, reminiscent of the Meissner effect) is required to break the 
bound state into smaller units (for example, an a particle into two deuterons, or a Cooper 
pair into two propagating electrons). The excitation spectra of the spin-charge bound states 
(corresponding to bound states of less than N electrons) have energy gaps, which grow with 
cz. The spin-neutral charge bound states exist at all T, in contrast to Cooper pairs in a BCS 
superconductor. but more like reminiscent of a Bose-Einstein condensation. The T = 0 
magnetic spin-susceptibility is of course zero (since there is no response to a field smaller 
than a critical one), but the low-T specific heat is proportional to T. 
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